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I. Phys. A Math. Gen. 26 (1993) L905-L908. Printed in the UK 

LETTER TO THE EDITOR 

More non-local symmetries of the Kdv equation 

-me A Guthrie 
Department of Mathemalics and Statistics, University of Canterbury, Christchurch New Zealand 

Received 1 July 1993 

Abstract. The invem of the usual recursion operator for lhe Kmweg-de  Vries equation is 
applied to the Galilean symmetry. A new family of non-lacal symmehies results. A symmetry 
algebra isomorphic to the semidireet sum of the loop algebra over sKr, E%) and a subalgebra of 
the Vimoro algebra is found. 

L .  

The Korteweg-de Vries (KdV) equation 0 = U, + uxzx + 12uu, has recursion operator [6] 

R = D: + 8u + 4u,D;' 

and classical symmetry generators 

a,, a,. -6ta, -fa., -+a, - +ax +ua,, 
with respective characteristics [7] 

-ux, -ut, 6tu, - 5. I U + $xu, + $tut. 

Repeatedly applying R to the zero characteristic yields -ux, then U,, followed by the 
famous infinite family of generalized symmetries [6]. Io [3], R is applied repeatedly to the 
characteristic 

x") =6tu - .! 
1 2  

of the Galilean symmetry group, yielding -4(u + $xu, + :tu,), the characteristic of the 
scaling symmetry group, and then an infinite family of (non-local) generalized symmetries. 
Recently, the fact that R-' is also a recursion operator for the KdV equation has been used 
to generate three further infinite families of non-local symmetries [2]. These symmeaies 
span a subalgebra, SI(& B) @A. WA], of the loop algebra over SI(.% R). One more infinite 
family of non-local symmetries of the KdV equation can be found by applying R-l to the 
characteristic of the Galilean symmetry group. 

Introduce the infinitedimensional Wahlquist-Estabrook prolongation [8] of the KdV 
equation described by the system of first-order differential equations 

(1) 
(2) 

(*A = A o * n  + (1 - s;)A*n-i 

(*")I = Bo*" + (1 - 8,O)BgQn-I + (1 - 8:)(1 - 8k)Bz*n-z 

together with the algebraic constraints 

(31 
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where 6: is the Kronecker delta symbol and n ranges over the non-negative integers. Here 

and 

A o = (  i )  A i = (  -1 0 ') 
Eo= ( 2u, 2ux + 8uZ -2u, -") E l = (  -4u ' )  0 E z = (  -4 ') 0 . 

The symmetly algebra of this system contains a subalgebra with basis {U,,,, w,, w,,, : m E Z] 
and commutators 

[ ~ m L n ~ m z l = 1 ~ m t ~ ~ m ~ I = [ ~ m , . ~ m , l = O  

[ u m , .  ~ m z l =  2vm,+mz [Unt,. wmJ= -2wmt+mz [vmt,wmJ =-~mtmZ. 

Details can be found in [2] .  

(non-local) generalized symmetry of the KdV equation and [F, G, H }  satisfy 
The description of 7Z-I follows the approach of [I]. If Q is the characteristic of a 

DJF) = p i Q  D,(F) = + 2poroD, - 2(4upi + 
D,(G) = p i 2 F  DJG) = (-ox + 2piiro)(Q) - 4up;'F 
D,(H) = p i %  D,(H) = -&Q - 4upiZG 

then ?=-'(e) = G + 2poroH is also the characteristic of a (non-local) generalized 
Symmetry of the KdV equation. The notation R-l(Q) is motivated by the observation 
that R(G + 2poroHf = Q + au,, with Q an arbitrary constant. For example, 

x'2' = -4R-'cy"') = 2(q1ro - piso) 

is the characteristic of the non-local symmeby generator 

The functions 
(21 

Mi =-(i+2)pi+z+po(4iriti -pittsd+qo(~i+iri -piri+i) 

and 
(2) 

Ni = -6 + 2)qi+z - po(qitisl - qisiti) - qO(Plsit1 - qi+lrl) 

are found by requiring invariance of equations (1) to (3) under the action of pr XZ. 

The family of symmetries {R-"(x"') : n = 1.2, . . .} could be generated using repeated 
applications of R-l, following the method of [2].  Here, however, the underlying Lie algebra 
is such that this process can be avoided. Notice that the Galilean symmetry generator 
prolongs to 
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j=O k=l 

"-2 n-I-j 

c q j  k(qi+D-j-krk - p&si+n-j-k) 
j=O k 1  

for all integers i 2 0 and n 2 2. A further symmetry of the prolonged system is 

The Wahlquist-Estabrook prolongation of the KdV equation described by equations (I) 
to (3) thus admits four distinct infinite families of symmetry generators. These symmetries 
generate a remarkable Lie algebra It has basis [U,, U,. w,, xn : m , n  E 25, n s O} and 
commutator table 

That is, the KdV equation admits a symmetry algebra isomorphic to the semidirect sum of 
the loop algebra over e[(& R) and a subalgebra of the Virasoro algebra 

Notice that 77, : x'") H -4x'"-'' for all positive integers n so that, as claimed above, 
the virasom algebra is generated by the action of 77,-I on the Galilean symmetry. The 
mule of this letter, when combined with those of [Z], 131 and [6], yield all the symmetries 
found by applying the recursion operator (and its inverse) to classical symmetries of the 

It is conjectured that similarly rich non-local symmetry structures can be associated 
with other integrable differential equations. Lou [SI has begun analysing the non-local 

KdV equation. 
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symmetry structure of the Sawada-Kotera equation by inverting that equation's recursion 
' operator. Kiso [4] has constructed an algebra SI(& @) @ @[A, A-'] of symmetries of the 

AKNS hierarchy using an elegant Lie algebraic construction which avoids the use of recursion 
operators altogether. 
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